On Numerical Solution of Semilinear Singular Perturbation Problems by Using the Hermite Scheme on a New Bakhvalov-type Mesh
نویسندگان
چکیده
A fourth-order finite-difference method for a semilinear singularly perturbed boundary value problem is studied. This method is based on Hermitian approximation of the second derivative on special new discretization mesh of Bakhvalov type. Numerical examples which demonstrate the effectiveness of the method are presented. AMS Mathematics Subject Classification (2000): 65L10
منابع مشابه
Institute for Numerical and Computational Analysis Dublin, Ireland An adaptive uniformly convergent numerical method for a semilinear singular perturbation problem
A singularly perturbed semilinear two point boundary value problem is considered, without any restriction on its turning points. A difference scheme is presented for solving this problem on an arbitrary locally quasiuniform mesh. It is shown that the solution of the scheme is first order accurate, uniformly in the perturbation parameter, in a discrete L1 norm. Numerical results are presented fo...
متن کاملAn efficient numerical method for singularly perturbed second order ordinary differential equation
In this paper an exponentially fitted finite difference method is presented for solving singularly perturbed two-point boundary value problems with the boundary layer. A fitting factor is introduced and the model equation is discretized by a finite difference scheme on an uniform mesh. Thomas algorithm is used to solve the tri-diagonal system. The stability of the algorithm is investigated. It ...
متن کاملA finite difference method on layer-adapted meshes for an elliptic reaction-diffusion system in two dimensions
An elliptic system of M(≥ 2) singularly perturbed linear reactiondiffusion equations, coupled through their zero-order terms, is considered on the unit square. This system does not in general satisfy a maximum principle. It is solved numerically using a standard difference scheme on tensor-product Bakhvalov and Shishkin meshes. An error analysis for these numerical methods shows that one obtain...
متن کاملNumerical Solution of Weakly Singular Ito-Volterra Integral Equations via Operational Matrix Method based on Euler Polynomials
Introduction Many problems which appear in different sciences such as physics, engineering, biology, applied mathematics and different branches can be modeled by using deterministic integral equations. Weakly singular integral equation is one of the principle type of integral equations which was introduced by Abel for the first time. These problems are often dependent on a noise source which a...
متن کاملNumerical Study on the Reaction Cum Diffusion Process in a Spherical Biocatalyst
In chemical engineering, several processes are represented by singular boundary value problems. In general, classical numerical methods fail to produce good approximations for the singular boundary value problems. In this paper, Chebyshev finite difference (ChFD) method and DTM-Pad´e method, which is a combination of differential transform method (DTM) and Pad´e approximant, are applied for sol...
متن کامل